32 research outputs found

    Performance improvements in wireless CDMA communications utilizing adaptive antenna arrays

    Get PDF
    This dissertation studies applications of adaptive antenna arrays and space-time adaptive processing (STAP) in wireless code-division multiple-access (CDMA) communications. The work addresses three aspects of the CDMA communications problems: (I) near-far resistance, (2) reverse link, (3) forward link. In each case, adaptive arrays are applied and their performance is investigated. The near-far effect is a well known problem which affects the reverse link of CDMA communication systems. The near-far resistance of STAP is analyzed for two processing methods: maximal ratio combining and optimum combining. It. is shown that while maximal ratio combining is not near-far resistant, optimum combining is near-far resistant when the number of cochannel interferences is less than the system dimensionality. The near-far effect can be mitigated by accurate power control at the mobile station. With practical limitations, the received signal power at a base station from a power-controlled user is a random variable clue to power control error. The statistical model of signal-to-interference ratio at the antenna array output of a base station is presented, and the outage probability of the CDMA reverse link is analyzed while considering Rayleigh fading, voice activity and power control error. New analytical expressions are obtained and demonstrated by computer simulations. For the application of an adaptive antenna. array at the forward link, a receiver architecture is suggested for the mobile station that utilizes a small two-antenna array For interference suppression. Such a receiver works well only when the channel vector of the desired signal is known. The identifying spreading codes (as in IS-95A for example) are used to provide an adaptive channel vector estimate, and control the beam steering weight, hence improve the receiver performance. Numerical results are presented to illustrate the operation of the proposed receiver model and the improvement in performance and capacity

    Satisfiability Modulo Graph Theory for Task Mapping and Scheduling on Multiprocessor Systems

    No full text
    Task graph scheduling on multiprocessor systems is a representative multiprocessor scheduling problem. A solution to this problem consists of the mapping of tasks to processors and the scheduling of tasks on each processor. Optimal solution can be obtained by exploring the entire design space of all possible mapping and scheduling choices. Since the problem is NP-hard, scalability becomes the main concern in solving the problem optimally. In this paper, a SAT-based optimization framework is proposed to address this problem, in which SAT solver is enhanced by integrating with a scheduling analysis tool in a branch and bound manner to prune the solution space efficiently. Performance evaluation results show that our technique has average performance improvement in more than an order of magnitude compared to state-of-the-art techniques. We further build a cycle-accurate network-on-chip simulator based on SystemC to verify the effectiveness of the proposed technique on realistic multiprocessor systems

    Hardware-software collaborative thermal sensing in optical network-on-chip–based manycore systems

    No full text
    Continuous technology scaling in manycore systems leads to severe overheating issues. To guarantee system reliability, it is critical to accurately yet efficiently monitor runtime temperature distribution for effective chip thermal management. As an emerging communication architecture for new-generation manycore systems, optical network-on-chip (ONoC) satisfies the communication bandwidth and latency requirements with low power dissipation. Moreover, observation shows that it can be leveraged for runtime thermal sensing. In this article, we propose a brand-new on-chip thermal sensing approach for ONoC-based manycore systems by utilizing the intrinsic thermal sensitivity of optical devices and the inter-processor communications in ONoCs. It requires no extra hardware but utilizes existing optical devices in ONoCs and combines them with lightweight software computation in a hardware-software collaborative manner. The effectiveness of the our approach is validated both at the device level and the system level through professional photonic simulations. Evaluation results based on synthetic communication traces and realistic benchmarks show that our approach achieves an average temperature inaccuracy of only 0.6648 K compared to ground-truth values and is scalable to be applied for large-size ONoCs.Nanyang Technological UniversityAccepted versionThis work is partially supported by NSFC 61772094, China, and NAP M4082282 and SUG M4082087 from Nanyang Technological University, Singapore

    Coroutine-based synthesis of efficient embedded software from SystemC models

    No full text
    SystemC is a widely used electronic system-level (ESL) design language that can be used to model both hardware and software at different stages of system design. There has been a lot of research on behavior synthesis of hardware from SystemC, but relatively little work on synthesizing embedded software for SystemC designs. In this letter, we present an approach to automatic software synthesis from SystemC-based on coroutines instead of the traditional approaches based on real-time operating system (RTOS) threads. Performance evaluation results on some realistic applications show that our approach results in impressive reduction of runtime overheads compared to the thread-based approaches. © 2010 IEEE

    A torus-based hierarchical optical-electronic network-on-chip for multiprocessor system-on-chip

    No full text
    Networks-on-chip (NoCs) are emerging as a key on-chip communication architecture for multiprocessor systems-on-chip (MPSoCs). Optical communication technologies are introduced to NoCs in order to empower ultra-high bandwidth with low power consumption. However, in existing optical NoCs, communication locality is poorly supported, and the importance of floorplanning is overlooked. These significantly limit the power efficiency and performance of optical NoCs. In this work, we address these issues and propose a torus-based hierarchical hybrid optical-electronic NoC, called THOE. THOE takes advantage of both electrical and optical routers and interconnects in a hierarchical manner. It employs several new techniques including floorplan optimization, an adaptive power control mechanism, low-latency control protocols, and hybrid optical-electrical routers with a low-power optical switching fabric. Both of the unfolded and folded torus topologies are explored for THOE. Based on a set of real MPSoC applications, we compared THOE with a typical torus-based optical NoC as well as a torus-based electronic NoC in 45nm on a 256-core MPSoC, using a SystemC-based cycle-accurate NoC simulator. Compared with the matched electronic torus-based NoC, THOE achieves 2.46X performance and 1.51X network switching capacity utilization, with 84% less energy consumption. Compared with the optical torus-based NoC, THOE achieves 4.71X performance and 3.05X network switching capacity utilization, while reducing 99% of energy consumption. Besides real MPSoC applications, a uniform traffic pattern is also used to show the average packet delay and network throughput of THOE. Regarding hardware cost, THOE reduces 75% of laser sources and half of optical receivers compared with the optical torus-based NoC

    UNION: A Unified Inter/Intra-Chip Optical Network for chip multiprocessors

    No full text
    As modern computing systems become increasingly complex, communication efficiency among and inside chips has become as important as the computation speeds of individual processor cores. Traditionally, inter-chip and intra-chip communication architectures are separately designed to maximize design flexibility under different constraints. However, jointly designing communication architectures for both inter-chip and intra-chip communication could potentially yield better solutions. In this paper, we present a unified inter/intra-chip optical network, called UNION, for chip multiprocessors (CMP). UNION is based on recent progress in nano-photonic technologies. It connects not only processors on a single CMP but also multiple CMPs in a system. UNION employs a hierarchical optical network to separate inter-chip communication traffic from intra-chip communication traffic. It fully utilizes a single optical network to transmit both payload packets and control packets. The network controller on each CMP not only manages intra-chip communications but also collaborate with each other to facilitate inter-chip communications. We compared CMPs using UNION with those using a matched electronic counterpart in 45 nm process. Based on eight applications, simulation results show that on average UNION improves CMP performance by 3.1X while reducing 92% of network energy consumption and 52% of communication delay. ©2010 IEEE

    Fine-grained task-level parallel and low power H.264 decoding in multi-core systems

    No full text
    In the past few years, the extinction of Moore's Law makes people reconsider the solutions for dealing with the low computing resource utilization of applications on multicore processor systems. However, making good use of computing resources in multi-core processors systems is not easy due to the differences between single-core and multi-core architecture. Nowadays short video apps like Instagram and Tik Tok have successfully caught people's eyes by fascinating short videos, typically just 10 to 30 seconds long, uploaded by the users of apps. And almost all of these videos are recorded by their mobile devices, which are typically HD (High Definition) or FHD (Full High Definition) videos, which prefer to be encoded/decoded by H.264/AVC rather then HEVC (High Efficiency Video Coding) on mobile devices in view of the energy consumption and decoding speed. How to dive the huge potential of the computing resource on multi-core mobile devices to speed up decoding these videos while consuming low energy, is a big challenge. In our previous work [1], a relatively simple parallel framework was proposed to implement a parallel H.264/ AV C decoder. This work further proposes a more detailed systematic task-level parallel framework, together with an energy saving strategy based on this framework, to research a new H.264/AVC decoder on multi-core processor systems. The proposed parallel method is composed of a set of rules to guide parallel software programming (PSPR) and a software parallelization framework (SPF). The PSPR is applied in pre-processing steps to address the potential issues limiting the inherent parallelism, and the SPF is applied to parallelize the original serial programs. After the parallelization is successfully deployed, DVFS technique would be applied to decrease the power dissipation based on the SPF. Results show that proposed solutions make a significant improvement in decoding speed of 32% at 720p, 27% at 1080p and 29% at 2160p, and in energy savings o...Nanyang Technological UniversityThis work is partially supported by NAP M4082282 and SUG M4082087 from NTU Singapore, and NSFC 61772094, Chongqing High-Tech Program cstc2017jcyjA1430, the Fundamental Research Funds for the Central Universities 106112017CDJQJ188829, China, and China Scholarship Council No. 201706050117
    corecore